

Welcome to pythia’s documentation!

Pythia is a library to generate numerical descriptions of particle
systems. Most methods rely heavily on freud [https://github.com/glotzerlab/freud] for efficient neighbor search
and other accelerated calculations.

Installation

Pythia is available on PyPI as pythia-learn:

$ pip install pythia-learn freud-analysis

You can install pythia from source like this:

$ git clone https://github.com/glotzerlab/pythia.git
$ # now install
$ cd pythia && python setup.py install --user

Note

If using conda or a virtualenv, the –user argument in the pip
command above is unnecessary.

Citation

In addition to the citations referenced in the docstring of each
function, we encourage users to cite the pythia project itself.

Documentation

The documentation is available as standard sphinx documentation:

$ cd doc
$ make html

Automatically-built documentation is available at
https://pythia-learn.readthedocs.io .

Usage

In general, data types follow the hoomd-blue schema [http://hoomd-blue.readthedocs.io/en/stable/box.html]:

	Positions are an Nx3 array of particle coordinates, with (0, 0, 0) being the center of the box

	Boxes are specified as an object with Lx, Ly, Lz, xy, xz, and yz elements

	Orientations are specified as orientation quaternions: an Nx4 array of (r, i, j, k) elements

Examples

Example notebooks are available in the examples directory:

	Unsupervised learning [https://github.com/glotzerlab/pythia/blob/master/examples/Unsupervised%20Learning.ipynb]

	Supervised learning [https://github.com/glotzerlab/pythia/blob/master/examples/Supervised%20Learning.ipynb]

	Steinhardt and Pythia order parameter comparison (FCC and HCP) [https://github.com/glotzerlab/pythia/blob/master/examples/Steinhardt%20FCC%20HCP%20comparison.ipynb]

Contents:

	Bond-related Descriptors

	Spherical Harmonic Descriptors

	Voronoi Descriptors

	Learned Representations

Indices and tables

	Index

	Module Index

	Search Page

Bond-related Descriptors

This module computes relatively simple descriptors based on
nearest-neighbor bonds, with few additional transformations.

	
pythia.bonds.neighborhood_angle_singvals(box, positions, neighbors, rmax_guess=2.0)

	Construct a matrix of pairwise angles between (rk - ri) and (rj -
ri) for all neighbors j and k(==j) of each particle i, for a
particular number of neighbors. Returns the singular values of
this matrix to fix permutation invariance.

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

	
pythia.bonds.neighborhood_angle_sorted(box, positions, neighbors, rmax_guess=2.0)

	Construct a matrix of pairwise angles between (rk - ri) and (rj -
ri) for all neighbors j and k(==j) of each particle i, for a
particular number of neighbors. Returns the sorted values of
this matrix to fix permutation invariance.

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

	
pythia.bonds.neighborhood_distance_singvals(box, positions, neighbors, rmax_guess=2.0)

	Construct a matrix of pairwise distances filled with |r_k - r_j|
for all neighbors j and k(==j) of each particle i. Returns the
singular values of this matrix to fix permutation invariance.

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

	
pythia.bonds.neighborhood_distance_sorted(box, positions, neighbors, rmax_guess=2.0)

	Construct a matrix of pairwise distances filled with |r_k - r_j|
for all neighbors j and k(==j) of each particle i. Returns the
sorted contents of this matrix to fix permutation invariance.

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

	
pythia.bonds.neighborhood_range_angle_singvals(box, positions, neigh_min, neigh_max, rmax_guess=2.0)

	Construct a matrix of pairwise angles between (rk - ri) and (rj -
ri) for all neighbors j and k(==j) of each particle i, for a range
of neighborhood sizes from neigh_min to neigh_max
(inclusive). Returns the singular values of this matrix to fix
permutation invariance.

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

	
pythia.bonds.neighborhood_range_distance_singvals(box, positions, neigh_min, neigh_max, rmax_guess=2.0)

	Construct a matrix of pairwise distances filled with |r_k - r_j|
for all neighbors j and k(==j) of each particle i, for a range of
neighborhood sizes from neigh_min to neigh_max
(inclusive). Returns the singular values of this matrix to fix
permutation invariance.

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

	
pythia.bonds.normalized_radial_distance(box, positions, neighbors, rmax_guess=2.0)

	Returns the ratio of the euclidean distance of each near-neighbor
to that of the nearest neighbor for each particle.

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

Spherical Harmonic Descriptors

This module computes descriptors based on combinations of
spherical harmonics applied to nearest-neighbor bonds.

	
pythia.spherical_harmonics.abs_neighbor_average(box, positions, neigh_min=4, neigh_max=4, lmax=4, negative_m=True, reference_frame='neighborhood', orientations=None, rmax_guess=1.0, noise_samples=0, noise_magnitude=0, nlist=None)

	Compute the neighbor-averaged spherical harmonics over the
nearest-neighbor bonds of a set of particles. Returns the absolute
value of the (complex) spherical harmonics

	Parameters

	
	neigh_min – Minimum number of neighbor environment sizes to consider

	neigh_max – Maximum number of neighbor environment sizes to consider (inclusive)

	lmax – Maximum spherical harmonic degree l

	negative_m – Include negative m spherical harmonics in the output array?

	reference_frame – ‘neighborhood’: use diagonal inertia tensor reference frame; ‘particle_local’: use the given orientations array; ‘global’: do not rotate

	orientations – Per-particle orientations, only used when reference_frame == ‘particle_local’

	rmax_guess – Initial guess of the distance to find neigh_max nearest neighbors. Only affects algorithm speed.

	noise_samples – Number of random noisy samples of positions to average the result over (disabled if 0)

	noise_magnitude – Magnitude of (normally-distributed) noise to apply to noise_samples different positions (disabled if noise_samples == 0)

	nlist – Freud neighbor list object to use (None to compute for neighbors up to neigh_max)

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

@article{spellings2018,
 title = {Machine learning for crystal identification and discovery},
 volume = {64},
 url = {https://dx.doi.org/10.1002/aic.16157},
 doi = {10.1002/aic.16157},
 number = {6},
 journal = {AIChE Journal},
 author = {Spellings, Matthew and Glotzer, Sharon C},
 year = {2018},
 pages = {2198--2206},
}

	
pythia.spherical_harmonics.abs_system_average(box, positions, neigh_min=4, neigh_max=4, lmax=4, negative_m=True, reference_frame='neighborhood', orientations=None, rmax_guess=1.0, noise_samples=0, noise_magnitude=0, nlist=None)

	Compute the global-averaged spherical harmonics over the
nearest-neighbor bonds of a set of particles. Returns the absolute
value of the (complex) spherical harmonics

	Parameters

	
	neigh_min – Minimum number of neighbor environment sizes to consider

	neigh_max – Maximum number of neighbor environment sizes to consider (inclusive)

	lmax – Maximum spherical harmonic degree l

	negative_m – Include negative m spherical harmonics in the output array?

	reference_frame – ‘neighborhood’: use diagonal inertia tensor reference frame; ‘particle_local’: use the given orientations array; ‘global’: do not rotate

	orientations – Per-particle orientations, only used when reference_frame == ‘particle_local’

	rmax_guess – Initial guess of the distance to find neigh_max nearest neighbors. Only affects algorithm speed.

	noise_samples – Number of random noisy samples of positions to average the result over (disabled if 0)

	noise_magnitude – Magnitude of (normally-distributed) noise to apply to noise_samples different positions (disabled if noise_samples == 0)

	nlist – Freud neighbor list object to use (None to compute for neighbors up to neigh_max)

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

@article{spellings2018,
 title = {Machine learning for crystal identification and discovery},
 volume = {64},
 url = {https://dx.doi.org/10.1002/aic.16157},
 doi = {10.1002/aic.16157},
 number = {6},
 journal = {AIChE Journal},
 author = {Spellings, Matthew and Glotzer, Sharon C},
 year = {2018},
 pages = {2198--2206},
}

	
pythia.spherical_harmonics.bispectrum(box, positions, neighbors, lmax, rmax_guess=2.0)

	Computes bispectrum invariants of particle local
environments. These are rotationally-invariant descriptions
similar to a power spectrum of the spherical harmonics
(i.e. steinhardt order parameters), but retaining more
information.

	Parameters

	
	neighbors – number of nearest-neighbors to consider for local environments

	lmax – maximum spherical harmonic degree to consider. O(lmax**3) descriptors will be generated.

This function uses the following citations:

@article{kondor2007,
 title = {A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum},
 url = {http://arxiv.org/abs/cs/0701127},
 journal = {arXiv:cs/0701127},
 author = {Kondor, Risi},
 month = jan,
 year = {2007},
}

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

	
pythia.spherical_harmonics.neighbor_average(box, positions, neigh_min=4, neigh_max=4, lmax=4, negative_m=True, reference_frame='neighborhood', orientations=None, rmax_guess=1.0, noise_samples=0, noise_magnitude=0, nlist=None)

	Compute the neighbor-averaged spherical harmonics over the
nearest-neighbor bonds of a set of particles. Returns the raw
(complex) spherical harmonic values.

	Parameters

	
	neigh_min – Minimum number of neighbor environment sizes to consider

	neigh_max – Maximum number of neighbor environment sizes to consider (inclusive)

	lmax – Maximum spherical harmonic degree l

	negative_m – Include negative m spherical harmonics in the output array?

	reference_frame – ‘neighborhood’: use diagonal inertia tensor reference frame; ‘particle_local’: use the given orientations array; ‘global’: do not rotate

	orientations – Per-particle orientations, only used when reference_frame == ‘particle_local’

	rmax_guess – Initial guess of the distance to find neigh_max nearest neighbors. Only affects algorithm speed.

	noise_samples – Number of random noisy samples of positions to average the result over (disabled if 0)

	noise_magnitude – Magnitude of (normally-distributed) noise to apply to noise_samples different positions (disabled if noise_samples == 0)

	nlist – Freud neighbor list object to use (None to compute for neighbors up to neigh_max)

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

@article{spellings2018,
 title = {Machine learning for crystal identification and discovery},
 volume = {64},
 url = {https://dx.doi.org/10.1002/aic.16157},
 doi = {10.1002/aic.16157},
 number = {6},
 journal = {AIChE Journal},
 author = {Spellings, Matthew and Glotzer, Sharon C},
 year = {2018},
 pages = {2198--2206},
}

	
pythia.spherical_harmonics.steinhardt_q(box, positions, neighbors=12, lmax=6, rmax_guess=2.0)

	Compute a vector of per-particle Steinhardt order parameters.

	Parameters

	
	neighbors – Number of neighbors (int) or maximum distance to find neighbors within (float)

	lmax – Maximum spherical harmonic degree l

	rmax_guess – Initial guess of the distance to find nearest neighbors, if appropriate. Only affects algorithm speed.

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

	
pythia.spherical_harmonics.system_average(box, positions, neigh_min=4, neigh_max=4, lmax=4, negative_m=True, reference_frame='neighborhood', orientations=None, rmax_guess=1.0, noise_samples=0, noise_magnitude=0, nlist=None)

	Compute the global-averaged spherical harmonics over the
nearest-neighbor bonds of a set of particles. Returns the raw
(complex) spherical harmonic values.

	Parameters

	
	neigh_min – Minimum number of neighbor environment sizes to consider

	neigh_max – Maximum number of neighbor environment sizes to consider (inclusive)

	lmax – Maximum spherical harmonic degree l

	negative_m – Include negative m spherical harmonics in the output array?

	reference_frame – ‘neighborhood’: use diagonal inertia tensor reference frame; ‘particle_local’: use the given orientations array; ‘global’: do not rotate

	orientations – Per-particle orientations, only used when reference_frame == ‘particle_local’

	rmax_guess – Initial guess of the distance to find neigh_max nearest neighbors. Only affects algorithm speed.

	noise_samples – Number of random noisy samples of positions to average the result over (disabled if 0)

	noise_magnitude – Magnitude of (normally-distributed) noise to apply to noise_samples different positions (disabled if noise_samples == 0)

	nlist – Freud neighbor list object to use (None to compute for neighbors up to neigh_max)

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

@article{spellings2018,
 title = {Machine learning for crystal identification and discovery},
 volume = {64},
 url = {https://dx.doi.org/10.1002/aic.16157},
 doi = {10.1002/aic.16157},
 number = {6},
 journal = {AIChE Journal},
 author = {Spellings, Matthew and Glotzer, Sharon C},
 year = {2018},
 pages = {2198--2206},
}

Voronoi Descriptors

This module computes descriptors based on the Voronoi tessellation
of the system.

	
pythia.voronoi.angle_histogram(box, positions, bins, buffer_distance=None, area_weight_mode='product')

	Compute the area-weighted (a_i + a_j) angle histogram of all pairs
of faces for the voronoi polyhedron of each particle. Sums the areas
into the given number of bins (from 0 to pi).

	Parameters

	
	bins – Number of bins to use for the histogram

	buffer_distance – Distance to copy parts of the simulation box for periodic boundary conditions in the voronoi diagram computation

	area_weight_mode – Whether the weight for each pair of faces should be the sum (‘sum’) or product (‘product’) of the face areas

This function uses the following citations:

@misc{freud2016,
 title = {freud},
 url = {https://doi.org/10.5281/zenodo.166564},
 abstract = {First official open-source release, includes a zenodo DOI for citations.},
 author = {Harper, Eric S and Spellings, Matthew and Anderson, Joshua A and Glotzer, Sharon C},
 month = nov,
 year = {2016},
 doi = {10.5281/zenodo.166564},
}

Learned Representations

The pythia.learned module implements building blocks for
creating learned representations of particle systems. They are
implemented within the keras [https://keras.io] framework for ease
of integration into standard workflows.

	
class pythia.learned.bonds.InertiaRotation(num_rotations=1, initial_mass_variance=0.25, center=False, **kwargs)

	Generate rotation-invariant point clouds by orienting via principal axes of inertia

InertiaRotation takes an array of neighborhood points
(shape (…, num_neighbors, 3)) and outputs one or more copies
which have been rotated according to the principal axes of inertia
of the neighborhood. It does this using masses that can be varied
for each point and each rotation.

For an input of shape (…, num_neighbors, 3),
InertiaRotation produces an output of shape (…,
num_rotations, num_neighbors, 3).

Before computing the inertia tensor, points can optionally be
centered via the center argument. A value of True centers the
points as if all masses were 1, a value of “com” centers the
points using the learned masses, and a value of False (the
default) does not center at all.

	Parameters

	
	num_rotations – number of rotations to produce

	initial_mass_variance – Variance of the initial mass distribution (mean 1)

	center – Center the mass points before computing the inertia tensor (see description above)

	
class pythia.learned.spherical_harmonics.SphericalHarmonics(lmax, negative_m=False, **kwargs)

	Compute the (complex) spherical harmonic decomposition given a set of cartesian coordinates

For an input of shape (…, 3), SphericalHarmonics will
produce an output of shape (…, num_sphs), where num_sphs is
the number of spherical harmonics produced given the lmax and
negative_m arguments.

	Parameters

	
	lmax – maximum spherical harmonic degree to compute

	negative_m – If True, consider m=-l to m=l for each spherical harmonic l; otherwise, consider m=0 to m=l

	
class pythia.learned.spherical_harmonics.NeighborAverage(*args, **kwargs)

	Compute a weighted average an array of complex-valued spherical harmonics over all points in a neighborhood

Given an input of shape (…, num_rotations, num_neighbors,
num_sphs), NeighborAverage will produce an output of shape
(…, num_rotations, num_sphs). Each neighbor from each rotation
is assigned a learnable weight to contribute to the sum.

	
class pythia.learned.spherical_harmonics.ComplexProjection(num_projections=1, conversion='abs', activation=None, kernel_initializer='glorot_uniform', bias_initializer='random_normal', **kwargs)

	Compute one or more linear projections of a complex-valued function

Given an input of shape (…, num_rotations, num_sphs),
ComplexProjection produces an output of shape (..,
num_rotations, num_projections).

Outputs are converted to real numbers by taking the absolute value
of the projection output by default, but the real or imaginary
components can also be taken instead.

	Parameters

	
	num_projections – Number of projections (i.e. number of neurons) to create for each rotation

	conversion – Method to make the projection output real: ‘abs’ (absolute value), ‘angle’ (complex phase), ‘real’ (real component), ‘imag’ (imaginary component), or a comma-separated list of these values (i.e. ‘real,imag’)

	activation – Keras activation function for the layer

	kernel_initializer – Keras initializer for the projection weights matrix

	bias_initializer – Keras initializer for the projection bias matrix

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pythia	

 	
 	
 pythia.bonds	

 	
 	
 pythia.learned	

 	
 	
 pythia.learned.bonds	

 	
 	
 pythia.learned.spherical_harmonics	

 	
 	
 pythia.spherical_harmonics	

 	
 	
 pythia.voronoi	

Index

 A
 | B
 | C
 | I
 | N
 | P
 | S

A

 	
 	abs_neighbor_average() (in module pythia.spherical_harmonics)

 	
 	abs_system_average() (in module pythia.spherical_harmonics)

 	angle_histogram() (in module pythia.voronoi)

B

 	
 	bispectrum() (in module pythia.spherical_harmonics)

C

 	
 	ComplexProjection (class in pythia.learned.spherical_harmonics)

I

 	
 	InertiaRotation (class in pythia.learned.bonds)

N

 	
 	neighbor_average() (in module pythia.spherical_harmonics)

 	NeighborAverage (class in pythia.learned.spherical_harmonics)

 	neighborhood_angle_singvals() (in module pythia.bonds)

 	neighborhood_angle_sorted() (in module pythia.bonds)

 	
 	neighborhood_distance_singvals() (in module pythia.bonds)

 	neighborhood_distance_sorted() (in module pythia.bonds)

 	neighborhood_range_angle_singvals() (in module pythia.bonds)

 	neighborhood_range_distance_singvals() (in module pythia.bonds)

 	normalized_radial_distance() (in module pythia.bonds)

P

 	
 	pythia.bonds (module)

 	pythia.learned (module)

 	pythia.learned.bonds (module)

 	
 	pythia.learned.spherical_harmonics (module)

 	pythia.spherical_harmonics (module)

 	pythia.voronoi (module)

S

 	
 	SphericalHarmonics (class in pythia.learned.spherical_harmonics)

 	
 	steinhardt_q() (in module pythia.spherical_harmonics)

 	system_average() (in module pythia.spherical_harmonics)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to pythia’s documentation!

 		
 Bond-related Descriptors

 		
 Spherical Harmonic Descriptors

 		
 Voronoi Descriptors

 		
 Learned Representations

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

